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Abstract—Tons of online user behavior data are being generated every day on the booming and ubiquitous Internet. Growing efforts

have been devoted to mining the abundant behavior data to extract valuable information for research purposes or business interests.

However, online users’ privacy is thus under the risk of being exposed to third-parties. The last decade has witnessed a body of

research works trying to perform data aggregation in a privacy-preserving way. Most of existing methods guarantee strong privacy

protection yet at the cost of very limited aggregation operations, such as allowing only summation, which hardly satisfies the need of

behavior analysis. In this paper, we propose a scheme PPSA, which encrypts users’ sensitive data to prevent privacy disclosure from

both outside analysts and the aggregation service provider, and fully supports selective aggregate functions for online user behavior

analysis while guaranteeing differential privacy. We have implemented our method and evaluated its performance using a trace-driven

evaluation based on a real online behavior dataset. Experiment results show that our scheme effectively supports both overall

aggregate queries and various selective aggregate queries with acceptable computation and communication overheads.

Index Terms—Selective aggregation, differential privacy, homomorphic encryption
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1 INTRODUCTION

ONLINE user behavior analysis studies how andwhyusers
of e-commerce platforms and web applications behave.

It has been widely applied in practice, especially in commer-
cial environments, political campaigns, and web application
development [1], [2], [3]. Data aggregation is one of the most
critical operations in behavior analysis. Nowadays, the aggre-
gation tasks for user data are outsourced to third-party data
aggregators including Google Analytics, comScore, Quant-
cast, and StatCounter.While this tracking scheme brings great
benefits to analysts and aggregators, it also raises serious con-
cerns about disclosure of users’ privacy [4]. Aggregators hold
detailed data of users’ online behaviors, from which demo-
graphics can be easily inferred [5]. To protect users’ privacy,
government and industry regulations were established, e.g.,
the EUCookie Law [6] andW3CDo-Not-Track [7], which sig-
nificantly restricts the analysis of users’ online behaviors [4].
To address the conflict between the utility of analysis results
and users’ privacy,much effort has been devoted to designing

protocols that allow operations on user data while still pro-
tecting users’ privacy (e.g., [4], [8], [9], [10], [11], [12], [13],
[14]). Unfortunately, existing schemes guarantee strong pri-
vacy at the expense of limitations on analysis. Most of them
can only compute summation andmean of data over all users
without filter or selection, i.e., overall aggregation. Some previ-
ous methods allow more complex computations [13], [14],
[15]. For instance, Jung et al. [13] proposed a system that can
perform multivariate polynomial evaluation. Unfortunately,
they still do not support selection. However, selective aggrega-
tion is one of the most important operations for queries
on databases. It can be used to tell the difference among dif-
ferent user groups in a certain aspect. For instance,
“select avg ðincomeÞ from database group by gender”.

As shown in Fig. 1, a typical privacy-preserving data
aggregation system is composed of three parts: clients, inter-
mediary (i.e., aggregation service provider) and analyst. The
intermediary collects data from clients (users’ devices), does
some calculations and evaluates aggregate queries issued by
the analyst. A common assumption made in many existing
systems is that the intermediary is not trusted.

Adding noise to the aggregate result is a common
method to achieve stronger privacy preservation, differential
privacy [16], without which individuals’ privacy can be eas-
ily inferred from aggregate results by adversaries who have
computational power and auxiliary information. There are
two ways to add noise: either each client adds noise to its
own data (e.g., [8], [12], [17]), or the intermediary oblivi-
ously adds noise to the aggregate result (e.g., [4], [10], [11]).
Privacy-Preserving Selective Aggregation (PPSA) adopts
the latter way to achieve differential privacy, in which noise
needs to be added obliviously so as to prevent the interme-
diary from determining the noise-free result when the noisy
result is publicly released.
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The main goal of this paper is to design a practical proto-
col that is able to compute selective aggregation of user data
while still preserving users’ privacy. There are mainly three
challenges. First, the untrusted intermediary needs to evalu-
ate selective aggregation obliviously. It cannot access user
data for privacy concerns, but we hope it does computations
to achieve selection and aggregation on user data. We
exploit homomorphic cryptosystem to address this chal-
lenge, but so far it does not directly support data selection.
Second, our scheme PPSA needs to achieve differential pri-
vacy in a homomorphic cryptosystem. To protect individu-
als’ privacy, we need to obliviously add noise to aggregate
results in addition to encrypting user data. Existing differ-
ential privacy mechanism generates noise from real num-
bers, but homomorphic cryptosystems require plaintexts to
be integers. Simply scaling real numbers to integers would
cause inaccuracy and inconvenience. Thus, we need to
resolve this conflict. Third, PPSA should be resistant to client
churn, the situation where clients switch between online
and offline frequently. When an analyst issues a query,
there could be few users connected, which means few data
can be collected to evaluate the query. But the analyst wants
the intermediary to respond to her as soon as possible.
Thus, our protocol needs to tolerate client churn and evalu-
ate the query both timely and accurately.

To address these challenges, we design a scheme PPSA.
In general, our contributions can be summarized as follows:

� We present the first scheme PPSA that allows privacy-
preserving selective aggregation on user data, which
plays a critical role in online user behavior analysis.

� We combine homomorphic encryption and differen-
tial privacy mechanism to protect users’ sensitive
information from both analysts and aggregation ser-
vice providers, and protect individuals’ privacy from
being inferred. We prove that differential privacy can
be achieved by adding two Geometric variables,
which is computed via homomorphic encryption. Fur-
thermore, we present a privacy analysis of PPSA.

� We extend PPSA to two more scenarios to fully sup-
port more complex selective aggregation of user
data. We utilize a calculation to evaluate aggregation
selected by multiple boolean attributes. We design a
way of oblivious comparison between two integers,
and utilize it to evaluate aggregation selected by a
numeric attribute.

� We implement PPSA and do a trace-driven evaluation
based on an online behavior dataset. Evaluation
results show that our scheme effectively supports vari-
ous selective aggregate queries with high accuracy

and acceptable computation and communication
overheads.

The rest of this paper is organized as follows. Section 2
presents an overview of PPSA and related background
knowledge. Section 3 gives details on design rationale and
protocols. Then, Section 4 presents two extensions of PPSA.
Section 5 analyzes simulation results, followed by related
work in Section 6. Finally, Section 7 concludes this paper.

2 PRELIMINARIES

In this section, we first present PPSA model. Then, we intro-
duce differential privacy and review a useful homomorphic
cryptosystem.

2.1 System Model

First of all, we describe terms used in our study. In behavior
analytics, overall aggregation and selective aggregation are
two basic types used to query over data from a group of users.

Overall aggregation means computing the sum and mean
of a certain value of every user, e.g., “the total amount of
time online of all the users yesterday”.

Selective aggregation literally refers to selecting the users
who satisfy some conditions before aggregating their values,
e.g., “the average amount of time online of all themale users”.
Herein, “male” is a condition to pick out target users.

We suppose there is a centralized table T that contains
attributes and collects users’ answers to them. Attributes
(denoted by att) can only be numeric, because non-numeric
attributes cannot be directly aggregated.

Boolean attributes are a special type of numeric attributes,
to which users’ answers are boolean values (0 or 1), e.g.,
“gender is male”. A male user’s answer would be 1. Most
categorical attributes can be easily transformed into boolean
attributes. For example, education level can be decomposed
into several boolean attributes: “education level is bach-
elor”, “education level is master”, etc.

Numeric Attributes. Since boolean attributes are very
important in PPSA, we are referring to non-boolean
numeric attributes when we use “numeric attributes” later
on. Users’ answers to numeric attributes are non-negative
integers, e.g., “age = 25”.

To formalize, the relation schema of T is

T ðid; a1; a2; . . . ; ai; b1; b2; . . . ; bjÞ;

id is user ID, a represents numeric attribute, and b repre-
sents boolean attribute. The set of attributes is

A ¼ fa1; a2; . . . ; ai; b1; b2; . . . ; bjg:

Important symbols of this paper are listed in Table 1.
Fig. 1 gives an overview of PPSA, which is comprised of

a set of n users, the intermediary, and an analyst.
Clients are installed on the user side. They can be bun-

dled with users’ software that requires private analytics.
Thus, it is reasonable to assume clients are trusted. A client
collects a user’s data, detects and removes outliers. Once
the user gets online, the client sends encrypted data to the
intermediary. Clients are not involved in the process of sta-
tistical aggregation. We suppose the set of users is denoted
as U ¼ f1; 2; . . . ; ng. The plaintext answer of user u to

Fig. 1. System overview: Clients are installed on user side. The interme-
diary collects data from clients, computes aggregate statistics, and
answers queries issued by the analyst. The intermediary should also
ensure users’ privacy is not leaked.
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attribute att is denoted as xu
att, and the ciphertext of xu

att is
denoted as cuatt, for 8att 2 A, 8u 2 U.

Analysts are individuals or institutions that want to query
about user data. An analyst sends a query Q to the interme-
diary and then receives a noisy answer from it. Analysts are
assumed to be semi-honest, trying to learn individual users’
privacy. An analyst may collude with other analysts or
make one single query multiple times.

The intermediary, comprised of an aggregator and an
authority, bridges clients and analysts. They are in charge of
aggregating user data from clients and responding to
queries of analysts. They provide both functionality and
security. Table T is stored here. Details of them will be pre-
sented in Section 3. We assume they are both semi-honest
(a.k.a. honest but curious), i.e., they faithfully run the speci-
fied protocol, but may try to learn additional information
on their own. Furthermore, they do not collude with each
other. This assumption is common in the literature [4], [10],
[11], [17], and appropriate in realistic scenarios. For exam-
ple, we assume that it is explicitly stated in the privacy poli-
cies of the aggregator and the authority, and enforced by
the law. Aggregators who do not provide such privacy
statements would be blocked by the client software, e.g.,
browsers. Likewise, analysts would turn to only honest
authorities who obey such policies. Though there is a possi-
bility that the aggregator colludes with the authority, the
possibility is very small, because the party who initiates col-
lusion takes a high risk of being reported and exposed by
the other party who is honest, and then suffer from legal
punishment and loss of customers and profits. As a result,

we believe our assumption is reasonable in reality. In addi-
tion, this assumption can be relaxed by using trusted hard-
ware [11].

Our privacy goal is to prevent user data leakage to ana-
lysts and the intermediary.

2.2 Differential Privacy

Differential privacy proposed byDwork et al. [16], [18], [19] is
a privacy mechanism that protects any individual’s privacy
bymaking it very hard to determinewhether or not her record
is in the queried table.

Definition 1 (ð"; dÞ-differential privacy [20]). A computa-
tion C achieves ð"; dÞ-differential privacy if, for any two tables
T1 and T2 that differ in at most one record, and all
O � rangeðCÞ

PrðCðT1Þ 2 OÞ � expð"Þ � PrðCðT2Þ 2 OÞ þ d; (1)

where Pr is a probability distribution over the randomness of
the computation.

Thatmeans the probability that a computation generates a
given output is almost independent of the presence of any
individual record in the dataset. Differential privacy is inde-
pendent of the adversary’s computational power and auxil-
iary information so it is a very strong guarantee. Specifically,
there are two privacy parameters, " and d, in the expression.
The former parameter "mainly controls the tradeoff between
the accuracy of a computation and the strength of its privacy
guarantee. Higher " represents higher accuracy but weaker
privacy guarantee, and vice versa. The latter parameter d

relaxes the strict relative shift of probability in some cases,
where Inequation (1) cannot be satisfied without a non-zero
d [20].

A standard technique is adding random noise to the
answers. The noise distribution is carefully calibrated to the
sensitivity of the query.

Definition 2 (Sensitivity [16]). For a single snapshot query

Q : T ! Rk, the sensitivity of Q is

DQ ¼ maxkQðT1Þ �QðT2Þk1; (2)

for all T1; T2 differing in at most one element.

Informally, the sensitivity DQ is the maximum amount
the result QðT Þ can change, given any change to a single
user’s data in table T . It is a property of the query Q alone
and is independent of the table. The sensitivity decides how
much noise should be added to the answer of a query.

To achieve differential privacy, we prove that noise Z can
be generated according to the discrete Laplace distribution
DL [21], which is on integers. The probability mass function
ofDLðpÞ is

PrðZ ¼ kÞ ¼ 1� p

1þ p
pjkj; k 2 Z: (3)

Theorem 1. Given a query Q and a random integer Z � DLðpÞ,
adding Z to the result of Q achieves "-differential privacy,
where p ¼ expð�"=DQÞ.

TABLE 1
Symbol Table

T The centralized data table
att An attribute in T
a A numeric attribute in T
b A boolean attribute in T
c A numeric attribute for selection in T
A Attribute set
U User set
u A user in U
xu
att The answer of user u to attribute att

cuatt The ciphertext of xu
att

Q A query from the analyst
" Privacy parameter in differential privacy
p A parameter indicating how much noise

should be added
DLðpÞ Discrete Laplace distribution on integers
Geoð1� pÞ Geometric distribution
Z1; Z2 Two IID geometric variables as half-noises
pk Public key of BGN cryptosystem
sk Private key of BGN cryptosystem
min Minimum sample size set by the authority
s Sample size for the analyst requests
T ðu; attÞ The entry in T corresponding to user u and

attribute att
EðptÞ The ciphertext of any plaintext pt
S A randomly chosen set of s users who has

valid data
Satt The sum over attribute att

Ŝ Noisy result by adding noise to S

Sb
att

The sum over att selected by b

flagu A parameter indicating if u satisfies the
selection conditions
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Proof. For any r 2 rangeðCÞ

PrðCðT1Þ ¼ rÞ ¼ PrðQðT1Þ þ Z ¼ rÞ
¼ PrðZ ¼ r�QðT1ÞÞ
¼ 1� p

1þ p
pjr�QðT1Þj:

(4)

Similarly,

PrðCðT2Þ ¼ rÞ ¼ 1� p

1þ p
pjr�QðT2Þj: (5)

Then, we have

PrðCðT1Þ ¼ rÞ
PrðCðT2Þ ¼ rÞ ¼ pjr�QðT1Þj�jr�QðT2Þj

¼ exp
"ðjr�QðT2Þj � jr�QðT1ÞjÞ

DQ

� �

� exp
"jQðT1Þ �QðT2Þj

DQ

� �
� expð"Þ:

(6)

It is straightforward that Inequation (1) can be achieved. tu
Inusah et al. [21] proved that the difference of two inde-

pendent and identically distributed geometric variables
(denoted as Geoð�Þ) has the same distribution as a discrete
Laplace distribution variable.

Proposition 1. Let two independent variables Z1; Z2 � Geo
ð1� pÞ and Z ¼ Z1 � Z2, we have Z � DLðpÞ.
PPSA utilizes this method to obliviously add noise to the

true result. Because the noise can be decomposed into two
part, we call each of them a half-noise. If the aggregator gen-
erates a Z1 and the authority generates Z2, we can obtain a
discrete Laplacian noise by subtracting Z2 from Z1. Neither
of the two components knows the whole noise, so neither
can remove it. Blind noise addition prevents the system
from determining the noise-free result when the noisy result
is publicly released.

Unfortunately, differential privacy has an intrinsic draw-
back: the privacy parameter " degrades with the growing
number of queries answered, as shown by [22], [23], [24].
For example, when the attacker issues the same query and
gets the results for unlimited times, she can estimate the
real result by averaging those results and thus breach differ-
ential privacy.

Theorem 2 (Composition Theorem [22], [24]). For any
" > 0; d; d0 > 0, and k 2 N, a k-fold adaptive composition of
ð"; dÞ-differentially private mechanisms is ð"0; kdþ d0Þ-differen-
tially private, where

"0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k lnð1=d0Þ

q
� "þ k"ðe" � 1Þ: (7)

Later on, more strict quantification of the privacy degra-
dation level was given by Oh et al. [23]. As researchers keep
working on tightening the bound, we denote "0 ¼ fðk; "Þ for
simplicity and in case of inaccuracy. Given the number of
query k and objective privacy level "0, we can solve the
equation and calculate " for answering every single query
in turn.

2.3 Boneh-Goh-Nissim Cryptosystem

The Boneh-Goh-Nissim (BGN) Cryptosystem [25] is a kind
of homomorphic cryptosystem (please refer to [26] for a
detailed survey) which utilizes a bilinear pairing [27] to
allow the computation of an unlimited number of homo-
morphic additions and a single homomorphic multiplica-
tion of two ciphertexts. Bilinear map and bilinear group are
the bases of the BGN cryptosystem.

Definition 3 (Bilinear map [25]). Let G and G1 be two cyclic
groups of order n with g as a generator of G. A map
e : G� G! G1 is said to be bilinear if eðg; gÞ is a generator of
G1, and

eðua; vbÞ ¼ eðu; vÞab; (8)

for all u; v 2 G and all a; b 2 Z.

Definition 4 (Bilinear group [25]). G is a bilinear group if
there exists a group G1 and a bilinear map e such that,

1) G and G1 are two multiplicative cyclic groups of finite
order n.

2) g is a generator of G.
3) e : G� G! G1 is a bilinear map and g1 ¼ eðg; gÞ is a

generator of G1.

Boneh et al. [25] presented an approach to construct a
bilinear group of order n. We do not detail it here.

Next, we introduce the BGN cryptosystem as follows. Let
n ¼ pq for distinct odd primes p and q, and let G;G1 be two
multiplicative groups of order n with a bilinear pairing e:
G� G! G1, let g be a random generator of G, and let h be a
random generator of the subgroup of G of order p. Let
T < q, then P ¼ ZT ; C ¼ G;R ¼ Zn.

KeyGen(t): Given a security parameter t 2 Zþ, we gener-
ate two random t-bit primes p, q, set n ¼ pq, and select a
positive integer T < q. Then, we choose two multiplicative
groups G;G1 of order n, which support a bilinear pairing
e : ðG� G! G1Þ, as well as random generators g; u 2 G,
and sets h ¼ uq such that h is a generator of the subgroup of
order p. The public key is pk ¼ ðn; g; h;G;G1; eÞ, and the pri-
vate key is sk ¼ p.

Encrypt(pk;m): Given a message m 2 P and a public key
pk, Encryptðpk;mÞ chooses a random r 2 R and calculates
the ciphertext

c ¼ gmhrmod n 2 G: (9)

In this paper, we use c or Eð�Þ to denote ciphertext.
Decrypt(sk; c): Given a ciphertext c 2 C and a private key

sk,Decryptðsk; cÞ calculates

c0 ¼ cp ¼ ðgpÞmmod n; (10)

and uses Pollard’s lambda method [28] to take the discrete
logarithm of c0 in base gp, and then get the plaintext m in

time Oð ffiffiffiffiTp Þ. We actually can precompute a (polynomial-
sized) table of powers of gp so that decryption can occur in
constant time. In the rest of this paper, “mod n” is omitted
and understood to have been operated.

The security of the BGN cryptosystem is summarized in
the following theorem [25].

Theorem 3. Let n ¼ pq for distinct odd primes p and q. The
BGN cryptosystem is semantically secure if deciding whether
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or not a random element of G has order p is hard when p and q
are unknown.

Lastly, we show the homomorphic properties of BGN
cryptosystem. Given c1 ¼ gm1hr1 , c2 ¼ gm2hr2 , then

c1 ( c2 ¼ c1c2 ¼ gm1hr1gm2hr2 ¼ gm1þm2hr1þr2 ; (11)

is a valid encryption of m1 þm2 (( means homomorphic
addition)

c1g
k ¼ gm1hr1gk ¼ gm1þkhr1 ; (12)

is a valid encryption ofm1 þ k, and

ck1 ¼ ðgm1hr1Þk ¼ gkm1hr1k; (13)

is a valid encryption of km1. Subtraction of encrypted mes-
sages and constants can be accomplished by computing

c1c
�1
2 and c1g

�k, respectively. Given c1; c2 and a random
r 2 R, a ciphertext representing the product m1m2 can be
calculated

c1 ) c2 ¼ eðc1; c2Þhr
1

¼ eðgm1hr1 ; gm2hr2Þhr
1

¼ eðgm1gar1 ; gm2gar2Þhr
1

¼ eðgm1þar1 ; gm2þar2Þhr
1

¼ eðg; gÞðm1þar1Þðm2þar2Þhr
1

¼ g
m1m2þm1ar2þm2ar1þa2r1r2
1 hr

1

¼ g
m1m2
1 h

m1r2þm2r1þar1r2þr
1

¼ g
m1m2
1 h�r

1 2 G1:

(14)

Here, ) means homomorphic multiplication, e is a bilinear
map, g1 ¼ eðg; gÞ; h1 ¼ eðg; hÞ; and �r is a uniformly random
element ofR. All further homomorphic operations but mul-
tiplications are allowed in G1.

3 SYSTEM DESIGN

In this section, design choices of PPSA are explained first.
Then, the protocols for overall aggregation and selective
aggregation are described respectively. Finally, we present
a privacy analysis.

3.1 Design Rationale

In this section, we introduce three important decisions on
the system design.

3.1.1 Storing Data on Aggregator

Most of recent proposals are distributed systems, where
each client stores its private data locally. Such systems pro-
vide privacy but are susceptible to client churn. To avoid
this weakness, PPSA chooses to store all the user data on a
server, the aggregator. Clients are only required to send
their data when they are online. The aggregator can evalu-
ate queries without their participation. So the system oper-
ates well even if no client is online. In our mechanism, each
client encrypts its data before sending it to the aggregator,
which can only do calculations obliviously on these
encrypted data and output the results.

3.1.2 Introducing Authority

Due to using encryption in PPSA, there must be a compo-
nent to manage keys. First, the aggregator cannot take this
responsibility, because it holds all the private data. Second,
if clients manage keys, they have to participate in the pro-
cess of evaluating queries to decrypt the results. In that
case, the system could be out of service, when clients fre-
quently shift between online and offline, or when few cli-
ents are connected, which is opposite to our goal of
resisting client churn. Last, analysts cannot manage keys
either because any analyst can be an adversary. As a result,
we have to introduce the authority into the system to gener-
ate keys and keep the private key. The aggregator and the
authority constitute the intermediary of PPSA model.

3.1.3 Using Homomorphic Encryption and Differential

Privacy Mechanism

On one hand, the aggregator needs to do calculations oblivi-
ously on encrypted data. Homomorphic encryption sup-
ports such operations. Therefore, we introduce BGN
cryptosystem to perform this task. On the other hand, when
an analyst obtains aggregate results from the system, she
can infer individual privacy with her computational power
and auxiliary information. To prevent such privacy disclo-
sure, we exploit differential privacy mechanism proposed
by [18]. The incorporation of homomorphic encryption and
differential privacy guarantee strong security of PPSA.

3.2 Protocol for Overall Aggregation

The aggregation mechanism comprises three phases.
Phase 1: Setup
The authority first decides a set of attribute:

A ¼ fa1; a2; . . . ; ai; b1; b2; . . . ; bjg:
Then, it runs KeyGenðtÞ and gets sk ¼ p and pk ¼ ðn; g; h;
G;G1; eÞ. The authority also decides the objective overall pri-
vacy level by setting the parameter "0. It also limits the num-
ber of queries to be answered to k and maintains a query
counter cnt. Accordingly, the privacy budget " for every sin-
gle query can be calculated as mentioned in Section 2.2.
Besides, the authority sets a minimum and a maximum
value min;max of acceptable sample size for the analysts.
Then, it publishes the following tuple

hA; pk;min;maxi:
Based on A, the aggregator creates a table

T ðid; a1; a2; . . . ; ai; b1; b2; . . . ; bjÞ;
with values of all items set to null.

Phase 2: Data Collection
After setup, the system begins to collect user data. Every

client refers to A, and collects user’s answer to each of the
given attributes. (How the client gets user data is outside
the scope of this paper.) Once client u obtains an answer xuatt
to an attribute att, it encrypts the answer with pk published
by the authority

cuatt ¼ Encryptðpk; xu
attÞ ¼ gx

u
atthruatt : (15)
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Then, client u sends the following tuple to the aggregator, if
they are connected

hu; att; cuatti; 8att 2 A:

After receiving the tuple from client u, the aggregator
updates the value of corresponding item in table T :

T ðu; attÞ ¼ cuatt:

T ðu; attÞ refers to the item in the row corresponding to user
u and column corresponding to attribute att. So, the content
of T is dynamic.

Instead of sending all the data at a time, the client sends
every single answer shortly after it is obtained and
encrypted. It still fulfills data collection even when discon-
nected with the aggregator. In this case, the client would
send obtained data to the aggregator once getting online.
We do not need any other interactions between clients and
servers. Thus, PPSA is resistant to client churn.

Phase 3: Query Evaluation
Query evaluation can be executed before data collection is

finished, because evaluating a query does not involve all the
data in table T . The key to achieving selective aggregation is
counting data items of target users by multiplying them by 1,
and skipping the rest bymultiplying themby 0. These calcula-
tions are done in ciphertext, and thus no privacy disclosure
would occur. It consists of four steps (Fig. 2).

Step 1. An analyst sends the authority a query

Q ¼ h “OA ”; s; atti;
where “OA” is short for overall aggregation, s is sample size
the analyst wants, and att is any attribute in A.

Step 2. The authority would reject the query request if
cnt ¼ k to limit the degradation of differential privacy level.
Otherwise, it does sanity check once it receivesQ. If the argu-
ments are not matched, s < min, s > max, or att =2 A, the
query is also rejected. Otherwise, it goes on as follows. It com-
putes the privacy parameter (as described in Section 2.2):

p ¼ expð�"=DQÞ ¼ expð�"=maxkQðT1Þ �QðT2ÞkÞÞ: (16)

Then, the authority generates a Geoð1� pÞ random variable
Z1 as a half-noise and encrypts it with pk:

EðZ1Þ ¼ Encryptðpk; Z1Þ ¼ gZ1hr1 : (17)

Here EðptÞ refers to the ciphertext of any plaintext pt. At last,
the authority sends the following tuple to the aggregator:

hQ;p;EðZ1Þi:
Step 3. The aggregator runs Algorithm 1 (PPOAA). It first

counts the tuples that have valid values for the requested
attribute. If the number m is less than requested sample
size, it returns an error which indicates data deficiency. Oth-
erwise, it goes on to randomly choose a sample S from valid
tuples and sums up their values on att:

EðSattÞ ¼
Y
u2S

cuatt ¼ E
X
u2S

xu
att

 !
: (18)

It also generates a Geoð1� pÞ random variable Z2 as the sec-
ond half-noise. Then, the aggregator combines two half-
noises into the whole Laplacian noise in encrypted form
and obliviously adds it to the sum:

EðŜattÞ ¼ EðSattÞ � EðZ1Þ � EðZ2Þ�1 ¼ EðSatt þ Z1 � Z2Þ:
(19)

At last, the algorithm outputs an encrypted noisy aggregate
result EðŜattÞ. Here Satt refers to sum over attribute att, and
hat (̂ ) denotes noisy data. Then, the aggregator sends the
result to the authority.

Algorithm 1. Privacy-Preserving Overall Aggregation
Algorithm (PPOAA)

Input: Table T , attribute set A, query Q, noise parameter p,
encrypted half-noise EðZ1Þ, public key pk.

Output: Encrypted noisy sum EðŜattÞ, or Error.
1: m 0.
2: for each u 2 U do
3: if T ðu; attÞ is not null then
4: m mþ 1.
5: Mark user u.
6: end if
7: end for
8: ifm < s then
9: return Error.
10: else
11: Let S be a set of random s users that are marked.
12: EðSattÞ  

Q
u2S c

u
att:

13: Generate a Geoð1� pÞ random variable Z2.
14: EðZ2Þ  gZ2hr2 .
15: EðŜattÞ  EðSattÞ � EðZ1Þ � EðZ2Þ�1.
16: return EðŜattÞ.
17: end if

Step 4. If the result is Error, the authority sends an error
message to inform the analyst of data deficiency. Otherwise,
it decrypts the encrypted noisy result with its private key
sk, gets the noisy result:

Ŝatt ¼ Decryptðsk; EðŜattÞÞ; (20)

and sends it to the analyst, who can calculate the noisy
mean by himself. In addition, the authority increases the
query counter cnt. Here is the end of Query Evaluation.

3.3 Protocol for Selective Aggregation

We consider aggregation selected by one single boolean
attribute for simplicity. More complex scenarios will be

Fig. 2. Basic protocol for Query Evaluation: The intermediary consists of
two non-colluding entities, aggregator and authority. They cooperate to
calculate the noisy aggregate result following the given protocol.
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discussed in Section 4. To support selective aggregation, we
need to make some changes to the third phase, Query
Evaluation.

Step 1. An analyst sends the authority a query

Q ¼ h “SA ”; s; att; bi;
where “SA ” is short for selective aggregation and b is any
boolean attribute, att is the attribute to be aggregated
whereas b is used for selection.

Step 2. The authority checks cnt and query validity, which
is similar to the previous protocol. Then, it generates two
half-noises and sends the following tuple to the aggregator:

hQ; p;EðZ1Þ; EðZ2Þi:
Step 3. The aggregator runs Algorithm 2 (PPSAA) to eval-

uate the query Q. PPSAA first computes a sum on attribute

b, i.e., EðSbÞ. Then, it computes EðSb
attÞ such that:

EðSb
attÞ ¼ E

�X
u2S

xu
attx

u
b

�
¼
Y
u2S

e

�
cuatt; c

u
b

�
; (21)

where Sb
att represents sum over att selected by b. If user u

meets the predicate of b, i.e., xu
b ¼ 1, then his answer xu

att is
added to the sum. Otherwise, it is skipped since it is multi-
plied by a 0. At last, the aggregator obliviously adds two
noises to the two sums respectively and outputs them.
Then, the aggregator sends them to the authority.

Algorithm 2. Privacy-Preserving Selective Aggregation
Algorithm (PPSAA)

Input: Table T , attribute set A, query Q, noise parameter p,
encrypted half-noises EðZ1Þ, EðZ2Þ, public key pk.

Output: Tuple hEðŜbÞ; EðŜb
attÞi, or Error.

1: m 0.
2: for each u 2 U do
3: if neither T ðu; attÞ nor T ðu; bÞ is null then
4: m mþ 1.
5: Mark user u.
6: end if
7: end for
8: ifm < s then
9: return Error.
10: else
11: Let S be a set of s random users that are marked.
12: EðSbÞ  

Q
u2S c

u
b .

13: EðSb
attÞ  

Q
u2S eðcuatt; cub Þ.

14: Generate two Geoð1� pÞ random variables Z3; Z4.
15: EðZ3Þ  gZ3hr3 .
16: EðZ4Þ  gZ4hr4 .
17: EðŜbÞ  EðSbÞ � EðZ1Þ � EðZ3Þ�1.
18: EðŜb

attÞ  EðSb
attÞ � EðZ2Þ � EðZ4Þ�1.

19: return hEðŜbÞ; EðŜb
attÞi.

20: end if

Step 4. If the results are not Error, the authority decrypts
them and sends the noisy results to the analyst, who calcu-

lates noisy mean value by dividing Ŝb
att by Ŝb. Note it also

makes sense if att is a boolean attribute. For instance, att is
“education level is master” and b is “gender is female”. We
can get females’ ratio of holding a master degree.

3.4 Privacy Analysis

This section demonstrates the privacy-preserving property of
PPSA. As mentioned before, we have assumed that both the
aggregator and the authority are semi-honest. They run the
specified protocol faithfully even if either of them colludes
with others, so differential privacy is always preserved.

3.4.1 Analysts

An analyst sends queries to and receives results from the
authority. She normally does not communicate with the
aggregator or any user. She can only get noisy results,
which are differentially private so she cannot infer individ-
ual privacy with auxiliary information. If she colludes with
a user, they still cannot acquire other users’ data. If she col-
ludes with the aggregator, they have all encrypted data but
no private key to decrypt them. If she colludes with the
authority, they get the private key but no user data. If ana-
lysts collude with each other, they get no more information.

3.4.2 Aggregator

The aggregator holds encrypted user data but only the
authority knows the private key. It is assumed they do not
collude with each other so it cannot decrypt those data. All
of its computations are done obliviously. If it colludes with
a user, they still cannot get other users’ data. Half of differ-
ential private noise added to a result comes from the aggre-
gator. But it does not know the whole noise, so it cannot get
a noise-free result by removing noise from the noisy one (It
may get the noisy result from an analyst).

3.4.3 Authority

The authority holds the private key but has no access to user
data. It can access noisy results, but like the aggregator, it
cannot remove noises.

3.4.4 Clients

A client is installed on the user side and only knows its
user’s data. If some users collude with each other, they only
know their own data. Normally a client is not manipulated
by its user. Even if a user makes her client send considerable
duplicate values, the aggregator will only keep the latest
value as each user takes up exactly one row in table T .

3.4.5 Differential Privacy

In our scheme, Laplacian noise is added to the answer of
every query. The noisy is combined from two half-noises and
added by two parties, the aggregator and the authority, which
are assumed not to collude with each other. Since nobody
knows how much noise is added, nobody can remove the
noise from the released noisy query answer and then infer a
person’s data from it. As a result, differential privacy for sin-
gle queries is preserved. The parameter " balances the trade-
off between privacy and accuracy; a smaller " leads to stron-
ger privacy protection but greater answer distortion.

However, differential privacy has its own limitation that
privacy degrades with growing number of queries
answered. Even though the mechanism for answering a sin-
gle query is "-differentially private, we cannot achieve it
when many queries are answered (unless they are
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evaluated on different disjoint subsets of the data set). In
our settings, queries are evaluated on a random sample of
the original data and the data keeps changing, but the data
subsets where queries are computed are somewhat, if not
greatly, overlapped and correlated to each other. This sce-
nario can be modeled as the composition of many different
privacy mechanisms on different data releases that are cor-
related. According to the composition theorem [22], [24],
answering k adaptive queries, of which each is "-differen-
tially private, can still achieve "0-differential privacy though
it is not as strong as the privacy of answering a single query.
As mentioned in Section 2.2, "0 is a function of " and the
query number limit k. Given "0 and k, the authority calcu-
lates the privacy budget " and then applies it to answering
single queries. It rejects more query request when the query
number limit has been reached so as to ensure the overall
privacy guarantee. Therefore, it is concluded that "0-differ-
ential privacy is achieved in our scheme.

To answer more queries, we could choose to degrade
either the overall privacy level or the accuracy of answering
single queries. When the query number limited is reached,
the intermediary can pause the service and wait for the
update of all the data to finish. By then, the data set is
completely new and disjointed with the previous one so the
query counter can be reset and the service can be open
again, which is referred to as parallel composition [29].

4 EXTENSIONS

In this section, we first present steps to evaluate aggregation
selected by multiple different boolean attributes. Then, we
describe the protocol of aggregation selected by a single
numeric attribute, based on a way of comparison between
two encrypted integers.

4.1 Aggregation Selected by Multiple Boolean
Attributes

In reality, an analyst may want to know the aggregation of
an attribute selected by multiple different boolean attrib-
utes, e.g., the average number of searches made by females
who have master degrees, which involves two boolean
attributes: “gender is female” and “education level is mas-
ter”. To evaluate such queries, we present the Query Evalu-
ation phase as described in Fig. 3. For simplicity, we assume
there are only two boolean attributes restricting the aggre-
gation, from which we can easily extend to scenarios with
more boolean attributes.

Step 1. An analyst sends the authority a query

Q ¼ h “SA ”; s; att; b1; b2i;
where b1; b2 represents two different boolean attributes. (We
note that the aggregation makes sense if att is also a boolean
attribute not equal to b1 or b2.)

Step 2. The authority does sanity check and sends the fol-
lowing tuple to the aggregator:

hQ; p;EðZ1Þ; EðZ2Þi:

Step 3. The aggregator does a calculation:

EðflaguÞ ¼ cub1c
u
b2
¼ Eðxb1 þ xb2Þ: (22)

We use flag as an indicator. The ciphertext EðflaguÞ is an
encryption of 2 if and only if user u satisfies both b1; b2 con-
ditions. Then, the aggregator permutates all these EðflaguÞ
and sends them to the authority.

Step 4. Now the authority wonders which of the
encrypted flags are Eð2Þ. Noting that decrypting is unneces-
sary, she just computes EðflaguÞp (recall p is the private key)
and compare them with ðgpÞ0; ðgpÞ1; ðgpÞ2 (Equation (10)).
Then, these EðflaguÞ are set to

EðflaguÞ ¼ Eð1Þ; if EðflaguÞp ¼ ðgpÞ2
Eð0Þ; otherwise:

�
(23)

Next, it sends these EðflaguÞ back to the aggregator.
Step 5. Suppose Sb1b2 represents the number of users who

satisfy both b1; b2, S
b1b2
att represents the sum over att selected

by both b1; b2. The aggregator computes:

EðSb1b2Þ ¼
Y
u2S

EðflaguÞ (24)

EðSb1b2
att Þ ¼

Y
u2S

eðcuatt; EðflaguÞÞ: (25)

A user is counted only if she meets both conditions of b1; b2.
The aggregator then adds noise and sends them to the
authority.

Step 6. The analyst decrypts EðŜb1b2Þ; EðŜb1b2
att Þ, and sends

the noisy results to the analyst.

4.2 Aggregation Selected by a Numeric Attribute

To be more practical, the analyst may wonder the selective
aggregation of an attribute A selected by a numeric attrib-
ute, e.g., the average time online of 13 to 19 years old teena-
gers, where age is a numeric attribute for selection and ½13;
20Þ is an interval. Here, the attribute table is T ðid; a1; a2; . . . ;
ai; b1; b2; . . . ; bj; c1; c2; . . . ; ckÞ. a and c are both numeric, but
the former is used for aggregation, the latter for selection.
We tell them apart because they are encrypted differently.
Client u encrypts each bit of xu

c , while encrypting xua
entirely.

Before processing such queries, we introduce a way of
comparison between two encrypted integers, which is moti-
vated by Katti et al. [30]. Suppose two l-bit non-negat-

ive integer x and y in binary form: x ¼ ðxl; xl�1; . . . ; x1Þ;

Fig. 3. Protocol for query Evaluation in extension 1: The analyst queries
the aggregation of an attribute selected by multiple different boolean
attributes. The aggregator and the authority communicate for two rounds
and calculate the noisy result.
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y ¼ ðyl; yl�1; . . . ; y1Þ. For each i ¼ 1; 2; . . . ; l, let

di ¼ xi � yi; (26)

(Note di 2 f�1; 0; 1g) and

ei ¼ xi � yi þ 1þ
Xl
j¼iþ1

dj2l�jþ1: (27)

Proposition 2 (See proof in [30]). For any two l-bit non-neg-
ative integer x and y, we have x < y if and only if there exists
i, such that ei ¼ 0.

If we encrypt each bit of x and y, then we get c1 ¼
ðcl1; cl�11 ; . . . ; c11Þ, c2 ¼ ðcl2; cl�12 ; . . . ; c12Þ. To obliviously com-
pare x and y using c1; c2, the aggregator can utilize BGN
cryptosystem to compute:

EðdiÞ ¼ ci1ðci2Þ�1; (28)

EðeiÞ ¼ ci1ðci2Þ�1g
Yl
j¼iþ1

EðdjÞ2l�jþ1 : (29)

Then, it sends each EðeiÞ to the authority, which checks

whether there is any i such that EðeiÞ is the encryption of 0

(by checking whether EðeiÞp ¼ 1).
We now present the process of Query Evaluation. Still,

we consider one single attribute for selection.
Step 1. An analyst sends the authority a query

Q ¼ h“numSA”; s; att; c; z; wi;
where c is any numeric attribute for selection, and z; w are
bounds of interval ½z; wÞ.

Step 2. Same as before.
Step 3. For each user data xu

c (u 2 S), the aggregator com-

putes Eðeiu;zÞ and Eðeiu;wÞ mentioned above. Then, it permu-

tates the two tables of EðeÞ and sends them to the authority.
Step 4. The authority checks and learns the relationships

between xu
c and z; w. If xuc < w and xu

c 	 z, it sets flagu ¼ 1.
Otherwise, flagu ¼ 0. The authority finally encrypts and
sends these flags to the aggregator.

Step 5, 6. Same as before.

5 EVALUATION

In this section, we implement PPSA and evaluate its
performance.

5.1 Methodology

We first implemented the BGN cryptosystem using the Pair-
ing-based Cryptography Library (PBC) [31], which is a
library built on the GMP library to perform mathematical
operations in pairing-based cryptosystems. The security
parameter t was set to 80. Based on the cryptosystem, we
implemented PPSA in C.

Then, we did a trace-driven simulation based on a dataset
of 1,000 nationwide users’ demographics and online behav-
iors in four weeks. It is extracted from a dataset from China
Internet Network Information Center (CNNIC) [32]. The
behaviors include webpages browsed, time spent on each

webpage, browsers used. The demographic profiles include
gender, age, education level, income, occupation, etc.

We perform all simulations on a PC with an Intel Core
i3-2310M 2.10 GHz CPU and an 8 GB memory under
Ubuntu 12.04 OS.

5.2 Utility & Accuracy & Client Churn Resistance

We set differential privacy parameter " ¼ 1 for every single
query in our tests. To evaluate utility, we consider the fol-
lowing six queries. They all aggregate on a sample of 1,000
users in the whole four weeks.

� Q1: Average number of times of using Internet
Explorer.

� Q2: Ratio of male users.
� Q3: Average number of webpages browsed by users,

who are grouped by gender.
� Q4: Average number of shopping webpages browsed

by users, who are grouped by gender.
� Q5: Average number of times of using Internet

Explorer by users who are female and have a bache-
lor degree.

� Q6: Average number of webpages browsed by users,
who are grouped by age intervals.

After running simulations, we get all the noisy results.
The results of Q1; Q2; Q5 are 1,765, 0.773, 1,994, respectively.
The results of Q3; Q4 are shown in Fig. 4a. Analysts can
use them to compare the online interests of males and
females. The results of Q6 is shown in Fig. 4b, which can be
used to tell the differences among people of different ages.
Thus, it is shown that PPSA supports multiple types of
queries with acceptable accuracy.

Relative errors of the six results are 0.2, 0.4, 2.5, 4.3, 6.3,
and 11.3 percent, respectively. Here, relative error is caused
by the noise added, and depends on the privacy parameter

Fig. 4. Average number of webpages browsed: The statistics can be
used to compare the online interests of males and females, and online
activeness of different age groups.
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" and the real result of the query. The smaller the real result
is, the larger relative error the noisy result has, which is a
common issue of differential privacy mechanism. Fig. 5
depicts the impacts of s; " on the accuracy of evaluating Q1.
The relative error decreases when the sample size increases
since the real result rises with sample size. It is also sug-
gested that the smaller " is, the greater the inaccuracy is.

To prove PPSA is resistant to client churn, we compare it
with a most recent system called SplitX [10] in terms of
accuracy. We focus on Q2 because SplitX can only evaluate
such queries. We vary online user ratio and sample size s,
and use average relative error as a metric. As presented in
Fig. 6, PPSA has higher accuracy than SplitX, especially
when there are less than 10 percent users online. When few
users are online, SplitX cannot operate at all.

5.3 Overhead

5.3.1 Computation Overhead

We analyze run time by every phase and step of PPSA. The
setup time is constant and less than 10ms. The data collection
time is up to the computational ability of clients and end-to-
end time between clients and the aggregator. And the encryp-
tion time is almost negligible because one BGN encryption
costs less than 1.5 ms. The decryption time of the authority is
also a small constant. As for analysts, they only send their
queries and do a few simple further calculations, also not
time-consuming. Consequently, wewill not detail them.

Fig. 7a presents computation overheads of two algo-
rithms, which are run by the aggregator. PPOAA costs very
little time. PPSAA has greater overhead due to pairing oper-
ations, and it increases linearly as the growth of sample size,
i.e., the number of users whose data are involved in query
evaluation. But they are still very efficient in computation,
as the run time is less than 10 s when the sample size is
10,000. (The test data is generated from the real dataset.)

In Extensions 1 and 2, most of the overheads lie in Steps
3, 4, 5. We plot them in Fig. 7b. Their computation over-
heads are also in proportion to the sample size. Among
them, Step 4 of Extension 2 (E2.S4) is the most time-consum-
ing, whose run time is around 45 s when the sample size is
10,000. This is still acceptable. In addition, as depicted in
Fig. 8, overheads of Steps 3 and 4 in Extension 2 are also lin-
early related to l, the number of digits of the data for attri-
bute c (In Fig. 7b, l is set to 7). From these tests we show that
PPSA has acceptable computation overhead.

5.3.2 Communication Overhead

In PPSA, clients encrypt their data and send the ciphertexts
to the aggregator. Each ciphertext has a size of 30 bytes. So
the communication overhead for them is up to the number of
ciphertexts. For an analyst, she only sends a query whose
size is at most 30 bytes, which is negligible. Therefore, we
only focus on the aggregator and the authority. Table 2 sum-
marizes their communication overheads in bytes. (Recall s is
sample size and l is the number of digits of data for attribute
c.) For overall aggregation and basic selective aggregation,
communication overhead is very small and constant. For

Fig. 5. Relative error versus s; ": The relative error decreases when the
sample size s or the privacy budget � in differential privacy increases.

Fig. 6. Comparison with SplitX: PPSA has higher accuracy than SplitX,
especially when there are less than 10 percent users online.

Fig. 7. Computation overhead versus sample size: The computation
overheads are in proportion to the sample size for any of the four cases.

Fig. 8. Computation overhead versus number of bits: The computation
overheads of Steps 3 and 4 in Extension 2 are linearly related to l, the bit
number of the attribute of interest.
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Extensions 1 and 2, it is linearly related to s and l. In the eval-
uation of query Q6, the overheads of authority and aggrega-
tor are about 30 and 420 KB respectively. We can make it
clear that PPSA has acceptable communication overhead.

6 RELATED WORK

Privacy-preserving aggregation on sensitive user data has
raised much attention recently, including health care data
([33], [34]), time-series data ([8], [9]), wireless sensor network
data ([35], [36]), social network data ([37], [38]) and online
behavior data for analysis and advertising ([10], [17]). In gen-
eral, there are two types of systems in previouswork.

6.1 Centralized Systems

In a centralized system, all the user data are stored on the
server. It is important that users encrypt or encode their
data before sending them to the server. The server holds the
encrypted data, but it can only compute answers to queries
obliviously, e.g., [39], [40], [41]. However, these proposals
have different goals than our system and do not support
selective aggregation. Moreover, they do not guarantee dif-
ferential privacy. Homomorphic encryption is a common
method to achieve aggregation of encrypted data without
decryption, such as [14], [42], [43]. Chen et al. [44] used an
order-preserving hash-based function to encode both data
and queries instead. But they do not have the same goal as
us and cannot evaluate selective aggregation. Li et al. [45]
proposed a system that processes range queries, which yet
does not compute aggregation and assumes analysts to be
trusted. On the contrary, PPSA combines differential pri-
vacy and homomorphic encryption, and is able to selec-
tively aggregate encrypted user data.

6.2 Distributed Systems

In a distributed system, clients need to proactively (e.g., [8],
[10], [12], [46]), or passively (e.g., [4], [11], [47]) send
required data to the aggregator in a private way. But both
rely on the participation of clients. These systems all require
online users, so analysis cannot go on when most of the
users are offline. Homomorphic encryption is also applica-
ble in distributed system. For instance, PASTE [8] exploits
differential privacy and homomorphic cryptography but it
allows only summation of user data and the aggregator
knows the private key. Castelluccia et al. [36] use symmetric
homomorphic encryption so they need a trusted aggregator,
and they also allow only additive aggregation. DJoin [47]
aims to support distributed and differentially private query
answering service, but it applies to privacy-preserving data
join between two parties, which is a different scenario with

ours. Secure Multi-Party Computation (SMC) [48] requires
that all participants must be simultaneously online and
interact with each other periodically, which is infeasible for
practical scenarios. Some previous researches have noticed
the problem of client churn. For instance, Shi et al. [12] pro-
posed a system that can tolerate some offline clients, but a
trusted dealer and a trusted initial setup phase between all
participants and the aggregator are still needed. Rottondi
et al. [49] also discussed node failures but they addressed a
different issue from the problem in this paper.

When participating in query evaluation, clients need to
preprocess their data first to prevent individuals from being
identified. There are basically two approaches.

6.2.1 Each Client Anonymizes or Adds Noise to

Its Own Data

This approach has obviousweak points. Clients still might be
de-anonymized with auxiliary information or the utility of
user data is significantly degraded. Anonygator [50] assumes
that the content of the data collected would not leak privacy
and that clients can hide their identities by adopting an anon-
ymous network. Compared with it, PPSA has weaker
assumptions. Dwork et al. [20] used expensive secret-sharing
protocols leading to complex computations for each client,
which is opposite to our goal of achieving client churn resis-
tance, i.e., providing timely service even when clients fre-
quently shift between online and offline. Duchi et al. [51]
proposed local differential privacy which does not assume a
trusted data curator and is stronger than standard differen-
tial privacy. In our scheme, the aggregator is trusted and
thus local differential privacy is achieved. Other related
works [8], [12], [17] allow duplicate answers sent by a single
malicious client to pollute the query result substantially.

6.2.2 Server Obliviously Adds Noise to Aggregate

Results

Akkus et al. [4] presented the first system that provides web
analytics without tracking with differential privacy guaran-
tee, yet it requires a public-key operation per single bit of
user data, causing high overheads. PDDP [11] also has this
limitation. SplitX [10] utilizes XOR operation to achieve
low-cost encryption, thus has much better scalability. All of
the three designs define buckets to correspond to different
intervals of numeric values, which degrades data quality
because the aggregator can only get very obscure answers
from each client.

7 CONCLUSION

In this paper, we have described the challenges of making
online user data aggregation while preserving users’ pri-
vacy. Based on BGN homomorphic cryptosystem, we have
designed the first system that is able to securely and selec-
tively aggregate user data, making it practical in realistic
data analytics. It guarantees strong privacy preservation by
utilizing differential privacy mechanism to protect individ-
uals’ privacy. We have presented PPSA to evaluate aggrega-
tion selected by one boolean attribute, and extended it to
aggregation selected by multiple boolean attributes and by
one numeric attribute. Extensive experiments have shown

TABLE 2
Communication Overheads (Bytes): For Overall Aggregation

and Basic Selective Aggregation, the Communication
Overheads Are Small and Constant

Component OA Basic SA Extension 1 Extension 2

Authority 50 87 30 sþ 107 30 sþ 114
Aggregator 30 60 30 sþ 60 60l sþ 60

For the two extensions, they are linearly related to the sample size s (and the bit
number, for the aggregator in Extension 2).
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that PPSA supports various selective aggregate queries with
acceptable overhead and high accuracy.
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